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O N  THE USE OF THE KNOX 
EQUATION. II. T H E  EFFICIENCY 

MEASUREMENT PROBLEM 

A L A I N  BERTHOD 
Laborntoire des Sciertces Aiialyliqires 

U.A.  C N R S  434 
Uiiiversite de Lyoii I 

69622 Villeitrbaniie, cedex 
Frame 

ABSTRACT 

The Knox equation, which relates the reduced plate height, h, to 
the reduced linear velocity, y ,  has a great importance in column and 
stationary phase testing. Significant A, B, and C terms of the Knox 
equation cannot be obtain with erroneous plate heights, h. Four 
methods for efficiency determination, the inflection (0.6H) method, 
the height/area method, an asymmetry based (0.1H) method and the 
moment method, were critically compared using 200 real chromatograms. 
Efficiency obtained using Gaussian assuming methods were highly 
overestimated, while the asymmetry based method gave quite acceptable 
results. Using the exponentially modified Gaussian model, it is 
demonstrated that the b/a ratio (the sum b + a is the peak-width at 
10% of the peak height) is not an empirical figure of merit but can 
be related to a “peak skew“ expression. 

The A, B, and C terms of the Knox equation: 

h = A y’/3 + B/o + @ Eq. 1 
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1188 BERTHOD 

have a great practical and theoretical importance. The A term is used 
to assess the goodness of a column packing. The B term is related to 
solute longitudinal diffusion. The C term depends on the solute mass- 
transfer between phases (1-3). Although other general plate height 
equations were proposed by Giddings ( 4 ) ,  Snyder (S), Huber ( 6 )  or 
Horvath ( 7 ) ,  the Knox equation is the most widely used for column 
characterization. 

In the first part of this study, the fit problem was exposed 
( 8 ) .  It was shown that great care must be taken when using conven- 
tional fitting methods. The lowest confidence interval obtainable for 
the fitted A, B, and C terms of the Knox equation was in the 20% 
range. 

It may seem trivial that significant A, B, and C terms 
cannot be obtain with erroneous plate height measurements. However, 
commonly used methods for plate count determination produce overes- 
timated plate numbers and, consequently, biased Knox terms. The aim 
of the second part of this study of the Knox equation was to show 
that the way the efficiency is measured is great concern of the 
significance of the A, B, and C terms obtained. 

Determination of column efficiency can be done using more 
than ten different methods. Among which there are the width at half- 
height method, the tangent method, the inflection method (0.6H 
method), the three, four, or five sigma methods, the peak-height 
over area method, asyrmnetry based methods and the moment method (9). 
The last method is the only one that makes no assumption about the 
peak shape, that is why the moment method was given to be the only 
absolute method (10). Several authors compared plate counts obtained 
with various methods (9, 11). The moment method was confirmed to have 
the highest exactitude. However, because the moment method imposes 
the use of a computer, the comparison of methods was done with 
computer-synthesized peaks of known efficiency (9, 11). In this work, 
we propose to compare four plate-determination methods computing the 
efficiency of more than 200 real chromatographic peaks obtained for 
other purposes with a potpourri of stationary phase-mobile phase 
combinations on optimized systems (12) or non-optimized systems with 
fronting and tailing peaks (in micellar liquid chromatography) (13, 
14). 
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1- Theoretical part 

Column Efficiency measurements 
The four methods chosen were (i) the popular 0.6H method: 

in which No,6H is the plate number, t, is the retention time and W0.& 
is the peak width at 60% of the peak height in time unit; (ii) the 
peak-height/area (H/A) method: 

N,,,A = 2n (HtJA)' Eq. 3 

(iii) the asymmetry based method derived by Foley and Dorsey (15) 
which uses the peak width at 10% of the peak height (Wo,lH) and the 
asymmetry ratio b/a (with a and b referred to the peak maximum and 
a + b = Wo,,H) : 

NO,1H = [41.7 ( t , / W , , l H ) 2 1  / [b/a + 1.251 Eq. 4 

and (iv) the moment method: 

N m t =  Y2 1 M2 Eq. 5 

in which M, is the ith moment. M, is the peak area and is defined as: 

M,, = C(t) dt 

with C(t) the detector signal. The first reduced moment corresponds 
to the peak retention time: 

M, = [t C(t)/M,l dt 

y is the second central reduced moment and corresponds to the peak 
variance (10). Moment calculation cannot be done by hand; an 
analogic-digital converter is needed to digitize the chromatographic 
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1190 BERTH 0 D 

peak into at least 50 points which can be used by a computer for 
moment calculation. 

Exponentially modified Gaussian peak 
The efficiency measurement problem originates in the 

Gaussian shape peak approximation. Giddings has pointed out that, 
without any extra-column band-broadening, the simplest conceivable 
retention mechanism (single step sorption-desorption) does not lead 
to a Gaussian profile, but to a form containing a Bessel function and 
an exponential term (4, 10). 

The Gaussian model, convoluted by an exponential function, 
is a much closer representation of real peaks (16). The exponentially 
modified Gaussian (EMG) equation is: 

in which S is the peak surface area, u is the variance of the 
Gaussian factor, tG is the retention time of the Gaussian factor, K 
is the the constant of the exponential modifier term and t' is a 
dununy variable of integration (17). With the EMG equation, the 
moments can be simply expressed as: 

q = t , + s  
% = d + l ?  
% = 2 1  

Eq. 7 
Eq. 8 
Eq. 9 

The magnitude of the time constant K corresponds to the 
Gaussian profile departure. With a -c/o ratio lower than 0.5, a peak 
is almost gaussian. Non Gaussian peaks often present a tail which is 
evaluated with the peak "skew". 

Peak skew 
The third reduced central moment is used in "Skew" calcula- 

"Skew" = M,/K3" = 2r3 / ( 2  + z ? ) ~ ' ~  
tion : 

Eq. 10 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



USE OF THE KNOX EQUATION. I 1  1191 

In this work, we chose not to calculate third or higher moments 
because these moments cannot be computed with sufficient accuracy for 
real peaks. This is due to computer data truncating at elevated 
retention times and also to high noise-sensitivity. Although the only 
statistically exact definition of the skew is Eq. 10,  we chose to use 
a "peak skew" defined by Rocca et al. ( 1 8 )  as: 

"peak skew" = (M, - tr) / Eq. 11 

The "peak skew" expressed by Eq. 11 is related to the exact skew 
(Eq. 1 0 )  by: 

(M, - tP) / q " 2  = [ r  - (tr-tG)] / (d + P)1/2 = 

(Skew/2)lD - (tr - tG)/(d + 2)'" 

When the peak Gaussian departure is high, the term (tr - t,)/(d + 
- 8 ) l n  becomes low and the "peak skew" value of Eq. 11 becomes close 
to the cubic root of the half of the genuine "Skew" (Eq. 1 0 ) .  

Grushka demonstrated that the maximum value of the "Skew" was 2 ( 1 7 ) ,  
then, the "peak skew" value (Eq. 11) is always lower than 1. 

2- Comparison of four plate count methods 

The moment method was demonstrated to be the most accurate 
method. So, the three other efficiency measurement methods (0.6H, 

H/A, and 0.1H) were compared to the moment method assumed to produce 
the exact plate count of the real peaks. The criterion chosen to 
quantify the accuracy of a plate number, Nmtwr was the relative 
deviation (in percent) referred to the moment plate number, N m t :  

Deviation % = [lOO*(NrtM-N-t)] / N m t  

This deviation was compared for peaks with similar skew. 
Figures 1-3 are tridimensional (3D) plots of the deviation (z axis) 
for a mzthod versus the mment plate count (x axis) and the peak 
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1192 BERTHOD 

Figure 1: The significance of efficiency measurements using the 
0.6H method. Tridimensional plot of the inflection 
(0.6H) method deviation versus the exact efficiency, 
obtained by the moment method (X axis) and the peak 
skew (Y axis) obtained using 213 actual peaks. Negative 
peak skew corresponded to peak fronting. 

skew (y axis). Peaks with fronting were treated as peaks with a 
negative tailing (r<O). 

Inflection (0.6H) method 
Figure 1 presents the 3D-plot corresponding to the 0.6H 

method. In all cases, the plate count obtained by this method was 
overestimated by at least 30% with respect to the moment method 
value. The peak skew effect is obvious. The divergence increases as 
the peak skew increases, becoming dramatic for low efficiency 
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USE OF T H E  KNOX EQUATION. 11 1193 

columns. With a peak skew of 0.6, the deviation was 70% (overesti- 
mation) for peaks with 9000 actual plates (15300 plates, 0.6H 
method), it skyrocketed to 450% for peaks bearing only 700 actual 
plates (3200 plates, 0 . 6 H  method). 

Height/area method 

For the H/A method, Figure 2 presents a 3D-diagram plotted 
the same way as Figure 1. The general trend is similar, but the H/A 

method produced better efficiency values at low peak skew and/or with 
good columns. Whatever peak skew, the H/A deviation was lower than 
25% with 9000 plate or better columns. With 700 plate columns, the 
deviation could reach 280% with a peak skew of 0.6. For all peaks, 
the H/A method gave plate counts closer to the actual value than the 
0 . 6 H  method. Most often the H/A deviation was two times lower than 
the corresponding 0.6H deviation. 

Asynmetry based (0.1H) method 
The asymmetry based method was not supposed to be used with 

fronting peaks (15). The use of Eq. 4 with such peaks produced b/a 
ratio lower than unity and, consequently, plate counts higher than 
purely Gaussian peaks. To extend the use of the Dorsey's equation 
(Eq. 4 ) ,  we chose arbitrarily to put in Eq. 4 the ratio a/b instead 
of b/a in the case of fronting peaks. This produced the Figure 3 

plot with slightly underestimated plate counts ( -20%) for severely 
fronting peaks (peak skew lower than -0 .6)  and low efficiency (plate 
number lower than 4000). 

In general, the 0.1 method gave exact plate counts (devia- 
tion lower than 6% with respect to the moment method) for most 
experimental peaks studied. The highest deviation was 80% for very 
bad columns (700 plates) and severely tailing peaks (peak skew 0.6). 
Figures 1, 2, and 3 clearly show that the 0.1H method is better than 
the two other methods. This methcd was previously given as the best 
manual method for plate count evaluation ( 9 ) .  the present evaluation 
with real chromatographic peaks is in full agreement with evaluations 
performed with computer synthesized peaks ( 9 ,  11). 
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1194 BERTHOD 

'B- 

Figure 2: The significance of efficiency measurements using the 
peak-height over area method. See Figure 1 caption. 

As an interesting side-result, as shown by Figure 4, we found 
that the peak skew (Eq. 11) could be related to the b/a ratio by: 

b/a = exp [(3/2)*"peak skew"] = exp [(3/2)(M,-tr)/y"'] Eq. 12 

Eq. 12 is valid for negative peak skew. Given the variety of mobile 
and stationary phases, solutes and column lengths, the probability 
for this relationship to be serendipitous is low. If E q .  12 is 
confirmed, it links the b/a ratio to well-established chromatographic 
figure of merit, retention time, mass center and peak variance and 
the b/a ratio would no longer be an empirical figure of merit. For 
example, assuming Eq. 12 is exact, it is possible to derive 
mathematical relations corresponding to the graphical method proposed 
by Barber and Carr ( 19). This is exposed in Annex. 
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USE OF THE KNOX EQUATION. I1 1195 

Figure 3: The significance of efficiency measurements using the 
asymmetry based (0.1H) method. See figure 1 caption. 
For negative peak skew (peak fronting), the ratio a/b 
was used in Eq.  4 instead od b/a. 

peak skew 
Figure 4: Plot of the b/a ratio versus the experimental peak 

skew for 213 actual peaks. 
Full line: curve of the equation: b/a = exp(l.5 x 
skew). 
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1196 BERTHOD 

3- Efficiency and Knox plots 

Obviously, different sets of plate heights, h, versus 
reduced velocities, y ,  produce different A, B, and C terms. In a 
recent work using the B parameter of the Knox equation, we found B 
values leading to obstruction factor, higher than unity (12). A 
' m  factor higher than 1 is theoretically impossible; that would mean 
the solute diffusion in the mbile phase inside the porous stationary 
phase is easier and faster than the solute diffusion in the bulk 
mobile phase. We thought that the main reason explaining why 1. 

factors higher than unity were not reported previously was the 
efficiency measurement method. In most previous work, banibroadening 
were estimated assuming Gaussian peaks, this led to underestimated 
B values ( 12 ) . 

Figure 5 displays the different fits obtained with the same 
set of chromatograms (solute: benzene, k'=0.541), but the efficiency 
was measured using the four different methods described above. Table 
I lists the corresponding A, B, and C terms and the corresponding 
error of fit. One can see that. the moment method and the asymmetry 
based method (0.1H method) gave close results that was the reason why 
the 0.1H fits was not displayed on Figures 5 and 6: they were very 
close to the moment method curves. Figure 6 corresponds to the solute 
propylbenzene (k'=2.43) on the same column. 

Table I lists the Knox terms with the confidence limits. A 

and C terms obtained by fitting Knox plots where h values were 
obtained using Gaussian assuming methods, can be 50% to 500% off the 
exact values, underestimating them. The corresponding B values seem 
to be only 20% to 40% off, due to the fact that the B term depends 
on very low flow rate experiments. At low flow rates, peak tailing 
decreased, and almost Gaussian shapes could be found, specially for 
solutes with elevated k' . 

The high sensitivity of fit procedure to low variation in 
experimental results was illustrated using the point focussed by an 
arrow (Figure 5). With this point, the least square fit method (see 
Part I) gave the values 1.50, 4.0, and -0.06, for the A, B, and C 
terms, respectively. The visual fit method (8) suggested that the fit 
could be better without that arrowed point. The new fit, without the 
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Figure 5: Knox plots obtained with the same 19 benzene peaks but 
the efficiency was determined with the quoted methods. 
Mobile phase: methanol-water 80-20% v/v; Column 15 cm 
x 4 m i.d., nucleosil C18, 5 qm. See Table I. 
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Figure 6: Knox plots obtained with the same 19 propylbenzene 
peaks but the efficiency was determined with the quoted 
methods. Mobile phase: methanol-water 80-20% v/v; 
Column 15 cm x 4 m i.d., nucleosil C18, 5 qm. See 
Table I. 
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T a b l e  I - Parameters of F i g u r e s  5 and 6 

BERTHOD 

Benzene, Figure 5 
k'= 0.541, D.= 8.65x10dad/s 

Efficiency 
method 

moment 

0.1H 

H/A 

0.6H 

0.6H 

A B C E r r o r  Symbol 
of fit 

2.49 4.80 0.0 0.02 t 
k0.05 k0.2 +o .02 50 .005 

2.47 4.80 -0.01 0.025 
k0.15 f 0 . 2  50 .03 50.01 

0. 

0 

1.95 5.5 -0.1 0.006 
50.25 50.5 +O .05 +O .005 

0.98 1.5 0.04 0.010 
fO.10 50.5 50 .02 50 .007 

1.50 4.0 -0.06 0.024 
20.25 50.4 50.04 20.005 T 

Propylbenzene, Figure 6 
k'= 2.43, D.= 6.5x10dad/s 

Ef f ici.ency 
method 

0.1H 

H/A 

A B C Error Symbol 
of fit 

~ 

0 .81 1.5 
50.20 50.5 

0.79 1.8 
f0.20 f0.6 

0.98 6.0 
50.05 20.2 

0.75 6.2 
50.20 20.5 

0.13 
20.03 

0.11 
f0 .04  

0.01 
fO.01 

0.04 
fO .02 

t 0.028 
f0 .004 

0.019 
fO. 006 

a 0.0008 
f0. 0002 

0 0.016 
f0. 006 
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USE OF THE KNOX EQUATION. I1 I199 

point, gave 0.98, 7.5, and 0.04 for A, B, and C, respectively. The 
error of fit was five times lower. A change of only one point 
induced a variation of -53%, +47%, and +250% on the A, B, and C 

term, respectively. Although this example was chosen to point out 
dramatically the fit problem, it illustrates the extreme care that 
one must take when fitting h vs plots to get the A, B, and C terms 
of the Knox equation. It depends on what these terms are wanted for. 
In evaluation of fundamental properties of a new stationary phase or 
in solute-stationary phase interaction studies, the confidence limits 
for each Knox parameter must be given. In practical cases, when 
different columns are routinely compared using the same chromato- 
graphic system, the same mobile phase and the same solutes, a plot 
of h, the reduced plate height, versus F, the flow rate, is 
sufficient to determine the best column. However, a Gaussian assuming 
plate height determination will always overestimate the column 
efficiency and m y  overlook some important problems causing peak 
tailing. If there is no computer available to use the moment method 
for efficiency evaluation, the asymmetry based method (0.1H method) 
is the best substitute. 
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ANNEX 

Relation between r/a and b/a, the asynmetry rat io  
E q .  11 can be rewritten using E q s  7 and 8: 

Barber and Karr ( 1 9 )  proposed an abacus to obtain graphically (t, - 
tG)/u when r/u was known. Using the method of Yau (20) ,  which noticed 
that the peak maximum, at time t,, falls on the contour of the 
Gaussian constituent, one can write: 

in which H, and % are the EMG peak height and the Gaussian peak 
height, respectively, S is the peak area. From ref. 20,  it can be 
derived: 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



USE OF THE KNOX EQUATION. I1 1201 

Table I1 - calculated asymnetry parameter b/a 

z: 
U ’  
1 
2 

4 
8 

12 
16 

20 
25 

30 
60 

1 2 4 6 8 10 15 20 40 100 

1.36 1.94 2.63 3.00 3.25 3.41 3.67 3.83 4.10 4.30 
1.06 1.36 1.94 2.35 2.63 2.84 3.20 3.41 3.83 4.16 

1.00 1.06 1.36 1.67 1.94 2.16 2.57 2.84 3.41 3.93 
1.00 1.00 1.00 1.20 1.36 1.52 1.88 2.16 2.84 3.56 

1.00 1.00 1.00 1.06 1.14 1.25 1.52 1.78 2.45 3.28 
1.00 1.00 1.00 1.00 1.06 1.13 1.32 1.52 2.16 3.04 

1.00 1.00 1.00 1.00 1.01 1.06 1.20 1.36 1.94 2.84 
1.00 1.00 1.00 1.00 1.00 1.01 1.11 1.23 1.73 2.63 

1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.15 1.56 2.45 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.15 1.77 

As the variable is the z:/u ratio, the b/a value for ~ = 6 0  and 0=12 
is 2.84 (r/u = 5). Note that Eq. 4 was given for use in the 1.09 < 
b/a 2.76 range (15) and that the m a x i m u m  “peak skew“ being 1, the 
m a h u m  theoretical b/a ratio is 4.48 (exp 1.5, Eq. 12). 

I(tr - t,)/ul = [ 2  Log (1 + [ ( C / O ) ‘  / (1 + /%z:/~)]}]”~ Eq. A2 

Equation A2 is the mathematical expression corresponding to the 
abacus of Figure 4 of Reference 19. Combining Eqs 12, Al, and A2, we 
get : 

2/3 Log(b/a) = 
r/n - [ 2  Lcg {l + [ (zr /u)2 / 

[l + (r/c7)2]1’2 
(1 + ,Zz:/d]}]”2 

Table I1 lists the calculated b/a ratio for different z: and u values. 
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